Splitting Nitrogen Fertilization Is More Important than Nitrogen Level When Mixed Wheat Varieties Are Cultivated in a Conservation Agriculture System Article uri icon

abstract

  • http://www.mdpi.com/2073-4395/13/5/1295/pdf

description

  • Nitrogen (N) is one of the most limiting nutrients for cereal production, especially in wheat, which is one of the main crops cultivated globally. To achieve high yields, wheat requires a certain amount of nitrogen (N), as N deficiency can lead to a decrease in yield and thus reduce income for farmers. In contrast, excessive applications of N fertilizer can be detrimental to both terrestrial and aquatic environments. To optimize N fertilizer applications in wheat, a three-year field experiment was conducted to evaluate the impact of different N fertilization strategies on various N-related physiological and agronomic traits. Moreover, to optimize N utilization efficiency while maintaining crop productivity, a mixture of five winter wheat varieties was used to mitigate the possible impact of environmental constraints. These strategies were based on a simultaneous increase in N fertilization and N fertilizer fractionation at key stages of plant development in a soil conservation agriculture (SCA) system in which legumes were grown prior to the cultivation of the main crop. In this SCA system, we observed that 200 kgN·ha−1 was optimal for both N use efficiency (NUE) and aerial and grain biomass production. Moreover, we found that at this level of N fertilization, of the application strategies, a 40%/40%/20% split application at full tillering, at the first node, and at booting, respectively, appeared to be the best option for the highest plant productivity.

publication date

  • 2023