Rfam: Towards a sustainable resource for understanding the genomic functional ncRNA repertoire Grant uri icon

description

  • In molecular biology, the central dogma says that genes encoded in a genome code for RNA, which is then translated into the proteins carrying out the main processes of the cell. But, RNA is not just an intermediate step between genes and protein. Instead, RNA is capable of performing a number of tasks that are essential for life - for example, the ribosome (the machine responsible for synthesizing proteins from RNA) is an RNA-based machine, and RNA plays important roles in regulating the levels of other genes. These RNAs involved in biology are known as non-coding RNAs (ncRNA). RNA research has lagged behind that of proteins, in part due to the difficulties in working with them experimentally and computationally. The field of RNA biology is comparatively poorly served with resources that can aid research when compared with protein science. Rfam is one of the largest and most authoritative sources on ncRNA information, and provides a central portal of information covering a wide variety of ncRNA types. We use statistical models to group related non-coding RNAs into families. We then provide information on their function, as well as providing tools which other scientists can use to discover related non-coding RNAs in their samples of interest. A primary use of our database is to identify ncRNAs in DNA sequences. This allows scientists to map the positions of ncRNAs and study how ncRNAs have evolved between related organisms giving clues to their function. We aim to facilitate this further by providing families of ncRNAs from organisms which have had their entire genome sequenced. These organisms are generally those which are of interest to scientists because of their role in disease (e.g. pathogenic bacteria), their economic importance (e.g bread wheat, a major source of human nutrition), or because they occupy an important biological niche (e.g, humans). We'll also provide researchers with tools and training to build their own RNA families, allowing them to study RNAs which are of particular interest to them. Not only is it important to be able to identify a ncRNA, it's also important for us to tell our users what the function of an ncRNA is. To this end, we are improving our functional annotation of our RNA families, by using structured language terms that are easily parseable by both humans and computers. This means that our large data sets can be mined quickly, allowing researchers to build up a picture of how ncRNAs interact with the rest of the cell's components and understand more about the roles ncRNA play in biological systems. All our information is freely available via the Rfam website and as a downloadable database. We also export our data to other resources, such as databases concerned with a specific organism, and more general RNA databases such as RNAcentral.

date/time interval

  • January 21, 2015 - November 4, 2018

total award amount

  • 427987 GBP

sponsor award ID

  • BB/M011690/1