SAFERGUARDING SONORA'S WHEAT FROM CLIMATE CHANGE Completed Project uri icon

description

  • Sonora contributes 45% of the total wheat production in Mexico, however this is becoming increasingly compromised by high temperature and drought, which are an increasing problem in Sonora and globally due to climate change. There is therefore a growing urgency to "safeguard" Sonora's wheat from heat and drought stress. Within this project, a unique wheat panel will be assembled representing the most tolerant wheat genotypes and varieties currently known, globally. This Heat and Drought panel will be evaluated and analysed under field conditions in Sonora to select the best-performers and these will be analysed in detail at the molecular and physiological level to unravel the tolerance mechanisms and identify the underlying genes. Most molecular-physiological studies on stress responses have been conducted using intolerant reference genotypes, mainly because genetic resources are available, and in addition, plants are often grown under laboratory conditions. We therefore presently have very little information on tolerant-specific stress responses in crops, and even less in wheat. This project will therefore generate a first-of-its-kind comprehensive study on "true" tolerance mechanisms in wheat and this will have large implications for the research community and for breeding programs. One of the drought responsive pathways that will be analysed in detail within this project is related to the role of sugars in stress tolerance and the regulation of sugar allocation to seeds via trehalose-6-phosphate (T6P). It has already been proven that external application of T6P can enhance drought tolerance and the genes within this pathway are therefore prime targets of this project. One of these genes (TPS) is of particular interest and has already been subjected to gene editing using CRIPR-Cas9 technology. There are currently very few studies that go beyond the proof-of-concept that this technology works in wheat and this project will therefore pioneer this breakthrough technology for applications in wheat improvement, providing a land-mark study. Sharing expertise and joining forces, this project will be conducted in collaboration between CIAD in Sonora and Rothamsted Research (RRes) in the UK, building on the broad expertise and pre-existing collaborations of the PIs, their established partnership with CIMMYT and ICARDA, as well as integration with ongoing wheat research programs, such as "Designing Future Wheat" (DFW) in the UK, "International Wheat Yield Partnership" (IWYP) or "Wheat for a Hot and Dry Climate", an Australian Industrial Transformation Research Hub. The data generated within this project will not only greatly enhance our understanding of tolerance mechanisms in wheat, but, via this existing network, will inform breeders about which traits and genes to target and select for. Through provision of validated heat and drought tolerant germplasm, detailed information on tolerance mechanisms for better targeted phenotyping and selection, as well as molecular markers for selection of superior tolerance-related genes, this project will enable tolerance breeding whilst doing excellent science.

date/time interval

  • May 14, 2019 - November 30, 2022