PUSHING THROUGH HARD TIMES: uncovering how roots sense soil compaction Grant uri icon

description

  • Food security represents a major global issue. Topsoil, the most precious "natural capital assets", provides nearly 95% of food. The sense of urgency over topsoil is growing as the population is projected to reach 9 billion by 2050. Compaction hampers soil's ability to filter water, absorb carbon and retain water and nutrient to support the crop plants. The ability of a crop to efficiently absorb water and nutrients relies on its root system to fully explore soil available. Use of heavy farming equipment, intensity of farm traffic and overgrazing lead to soil compaction. For example, the average weight of vehicles used on farms has approximately tripled since 1966 and maximum wheel loads have risen by a factor of six. Soil compaction can reduce crop yields by as much as 60%. Therefore, developing compaction resistant crops is of paramount importance. Despite its increasing global agronomic importance, little is known about how crop roots may respond to soil compaction. My BBSRC Discovery Fellowship investigates how crop roots respond to soil compaction and then use this knowledge to develop crops with improved penetration ability. My project initially attempts to 'fill in the gaps' between roots sensing soil compaction and then altering their growth and shape of their root tips. To help my studies, I have already identified plant signals and genes such as ethylene and EIN2 that are important for this process. Several promising approaches will also be conducted including modifying roots to be less sensitive to ethylene. The knowledge gained from my fellowship will provide new information about the key genes and processes controlling root responses to soil compaction, helping breeders design novel approaches to manipulate root growth to enhance resource capture and yield in crops. Developing future crops resistant to soil compaction can help their roots forage deeper for water to help mitigate drought stress (hard soil which is tough to penetrate), reduce flooding (compacted soil poses increased risk of flooding by restricting the water absorption from the surface), nitrogen stress (as this nutrient leach deeper in soil) and also capture more carbon in the soil. My fellowship project will be undertaken in Plant Sciences at the University of Nottingham. The University hosts a world leading multidisciplinary team of researchers composed of experts from Maths, Plant, Crop, Soil and Computer Sciences, all dedicated to 'uncover' the hidden half of plants. To achieve this, these researchers have created the Hounsfield Facility which hosts state-of-the-art microCT scanners and other advanced imaging platforms. I will also benefit from the unparalleled support of my host Prof. Malcolm Bennett and colleagues Soil Scientist Prof. Sacha Mooney and Crop Scientists Dr. Sean Mayes, Dr. Rahul Bhosale and Dr. Darren Wells. My project also involves international and UK collaborators which include experts in Sweden (Prof. Karin Ljung for hormone analysis), China (Prof. Dabing Zhang providing rice resources and expertise) and Rothamsted Research (Dr. Steve Thomas and Dr. Richard Whalley, wheat genetics and soil compaction expertise).

date/time interval

  • April 1, 2021 - March 31, 2024

total award amount

  • 304748 GBP

sponsor award ID

  • BB/V00557X/1