BIVALIFE - Controlling infectious diseases in oysters and mussels in Europe Grant uri icon

description

  • The two core objectives of BIVALIFE are (i) to provide innovative knowledge related to pathogens infecting oysters and mussels and (ii) to develop practical approaches for the control of infectious diseases and resulting mortality outbreaks these pathogens induce. The project will address the major issue identified by the European commission (i.e. detection and management of infectious diseases in oysters and mussels) at the EU level since the increase in international and intra EU trade and exchanges of animals increases the risk of pathogen transfer and infectious disease outbreak occurrence. In this context, the specific objective of BIVALIFE are: (i) transfer and validate existing methods for detection and identification of oyster and mussel pathogens; (ii) improve the characterisation of oyster and mussel pathogens and develop innovative complementary diagnostic approaches; (iii) characterise culture sites in Europe regarding presence of oyster and mussel pathogens in relation to the presence or absence of mortality; (iv) investigate the life cycle, mechanisms allowing oyster and mussel pathogens to survive outside the host and their original source; (v) identify pathogen intrinsic virulence factors and effects on host defence mechanisms; (vi) assess the relationship between the presence of oyster and mussel pathogens and their role in observed mortality; (vii) develop methods and recommendations for pathogen control and eradication in Europe. The project will focus on three mollusc species, namely the Pacific cupped oyster Crassostrea gigas and two mussel species Mytilus edulis and M. galloprovincialis, the most important species in terms of European production. Interestingly, Pacific oysters and mussels display different levels of susceptibility to diseases. The targeted pathogens will be the virus OsHV-1, Vibrio species including V. splendidus and V. aestuarianus, as well as the parasite Marteilia refringens and the bacterium Nocardia crassostreae.

total award amount

  • 4555673.2