Simulation of winter wheat response to variable sowing dates and densities in a high-yielding environment Article uri icon

abstract

  • https://edepot.wur.nl/583765
  • https://hal.inrae.fr/hal-03746248/document
  • https://hal.inrae.fr/hal-03746248/file/Dueri-JEB-2022-CC-BY.pdf

description

  • Crop multi-model ensembles (MME) have proven to be effective in increasing the accuracy of simulations in modelling experiments. However, the ability of MME to capture crop responses to changes in sowing dates and densities has not yet been investigated. These management interventions are some of the main levers for adapting cropping systems to climate change. Here, we explore the performance of a MME of 29 wheat crop models to predict the effect of changing sowing dates and rates on yield and yield components, on two sites located in a high-yielding environment in New Zealand. The experiment was conducted for 6 years and provided 50 combinations of sowing date, sowing density and growing season. We show that the MME simulates seasonal growth of wheat well under standard sowing conditions, but fails under early sowing and high sowing rates. The comparison between observed and simulated in-season fraction of intercepted photosynthetically active radiation (FIPAR) for early sown wheat shows that the MME does not capture the decrease of crop above ground biomass during winter months due to senescence. Models need to better account for tiller competition for light, nutrients, and water during vegetative growth, and early tiller senescence and tiller mortality, which are exacerbated by early sowing, high sowing densities, and warmer winter temperatures.
  • Peer reviewed
  • This study was a part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Phase 4 and was supported by the French National Research Institute for Agriculture, Food (INRAE) and the International Maize and Wheat Improvement Center (CIMMYT) through the International Wheat Yield Partnership (IWYP, grant IWYP115). SD and PM acknowledge support from the metaprogram Agriculture and forestry in the face of climate change: adaptation and mitigation (CLIMAE) of INRAE. YC and FT acknowledge support from the National Natural Science Foundation of China (No. 31761143006). RPR and GBM acknowledge financial support from BARISTA project (031B0811A) through ERA-NET SusCrop under EU-FACCE JPI. KCK was funded by the German Federal Ministry of Education and Research (BMBF) through the BonaRes project ’’I4S’’ (031B0513I). AS and TG acknowledge funding by the German Federal Ministry of Education and Research (BMBF) through the BonaRes Project “Soil3” (FKZ 031B0026A). KCK and JEO were supported by the Ministry of Education, Youth and Sports of Czech Republic through SustES—Adaption strategies for sustainable ecosystem services and food security under adverse environmental conditions (CZ.02.1.01/0.0/0.0/16_019/000797). FE acknowledges support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC 2070 – 390732324”. TKDW was funded by the German Research Foundation (DFG, Grant Agreement SFB 1253/1 2017). MAS and NS at Rothamsted Research received grant-aided support from the Biotechnology and Biological Sciences Research Council (BBSRC) through Designing Future Wheat [BB/P016855/1] and Achieving Sustainable Agricultural Systems [NE/N018125/1] jointly funded with NERC. TP and FT are supported by the DivCSA project funded by the Academy of Finland (decision no. 316215).

authors

publication date

  • 2022