Coupling crop simulation modelling and multi-criteria decision aid for ranking the sustainability of cropping sequences Article uri icon

description

  • IntroductionCrop sequences are important to make efficient use of natural resources and ensure food security. Climate change affects the sustainability of crops in cropping sequence. The application of crop sequence modelling to evaluate the sustainability of cropping sequences under projected climate is a less explored area.MethodsThe present work evaluated the impact of projected climate on six cropping sequences viz., rice-mustard-groundnut, rice-lentil-groundnut, rice-potato-groundnut, rice-wheat-groundnut, rice-maize-groundnut and rice-mustard-fallow in the Lower Gangetic Plain of India. CMIP-5 multi-model ensemble, long-term crop sequence modelling using DSSAT and a multiple criteria decision analysis tool, TOPSIS was used to evaluate sustainability. Future climate scenarios were developed using 29 GCMs from which a subset of 5 representative GCMs was selected for mid-century (2040-2069) and end-century (2070-99) under RCP4.5 and RCP8.5 emission scenarios. Weighted average ensemble yield, ETa and nitrogen fixed by all cropping sequences for the study period were used to rank cropping sequences for sustainability using TOPSIS.Results and DiscussionThe minimum and maximum temperatures during mid and end-centuries were projected to be consistently higher than the baseline period (1980-2010) for all the cropping seasons. Under all the periods, rice-lentil-groundnut had the highest weighted average ensemble yield, followed by rice-wheat-groundnut. Rice-lentil-groundnut fixed the highest quantity of nitrogen, followed by rice-maize-groundnut. Ranking of cropping sequences for sustainability by the TOPSIS method indicated that during mid-century (under both RCP4.5 and RCP8.5), the rice-lentil-groundnut sequence will be the most sustainable cropping sequence. However, by the end century, the rice-wheat-groundnut sequence will be the most sustainable cropping sequence, followed by rice-lentil-groundnut under both RCP4.5 and 8.5. In all the cropping sequences, rice will be benefitted by higher amount of nitrogen fixed and preceding groundnut. The three parameters considered for defining sustainability in crop production (yield, ETa and N-fixed) ensures higher produce and return for the farmer, less dependence on irrigation sources and increase in soil nitrogen content. In this paper, we show for the first time that cropping sequences can be evaluated for sustainability by combining crop sequence modelling, GCM ensemble and multi-criteria decision analysis. The results of the study will help the farmers of the study area to opt for the most sustainable cropping sequence and other alternatives in the context of climate change.

publication date

  • 2023